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Abstract Complex difference system models for asymmetric interaction addressed
here were first proposed by the author at The International Conference on Mea-
surement and Multivariate Analysis held on May, 2000, in Banff, Canada, which
was organized by Sizuhiko Nishisato. In general, asymmetric interactions among
members can be observed as a set of longitudinal asymmetric similarity matrices.
Traditionally, these data have been analysed by various two-mode models. Although
these models enable us to extract various structures underlying the asymmetric in-
teractions among members, we are unable to extract dynamics underlying these
interactions. Complex difference system models discussed in this paper enable us to
describe curious dynamics of these interactions among members.

1 Introduction

Asymmetric relationships between objects are frequently observed in the phenomena
observed in various branches of sciences. A typical example in psychology would
be a one-sided affection among members of any informal group. The amount of
migration from one region to another in geography is another example. These data
can be arranged in matrix form. In sociomatrix its row indicates, say, rater, and its
column denotes ratee. Such a data matrix is generally asymmetric. We call such a
relational data matrix asymmetric similarity matrix. We shall hereafter abbreviate it
as ASM between objects. Here, objects are sometimes called nodes in graph theory.
Suppose that we have a set of longitudinal asymmetric similarity matrices. This type
of data belongs to two-mode three-way data, because the rows and columns belong
to the same category, i.e., objects or nodes, and time belongs to the second category.
Broadly speaking this type of data can be said to be a three-way data.
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Two-mode three-way data including a set of longitudinal ASMs can be analysed
using several statistical and/or mathematical models (e.g., Desarbo et al., 1992;
Grorud et al., 1995; Okada & Imaizumi, 1997, 2004; Zielman, 1991; Zielman &
Heiser, 1991). These models can be thought of as extensions of the individual
differences MDS proposed by Carroll and Chang (1970) to ASMs. To be precise,
these models reduce differences or changes in an ASM between objects or nodes to
the individual differences. In other words, a major concern of these models can be
said to obtain some static structures of asymmetric relationships among objects or
nodes.

In contrast, there have been some models which are intended to obtain some
dynamic structures of these asymmetric relationships among objects or nodes (e.g.,
Chino & Nakagawa, 1990; Gregerson & Sailer, 1993; Tobler, 1976-77; Yadohisa &
Niki, 1999). For example, Chino andNakagawa (1990) fitted a set of two-dimensional
nonlinear differential equations to a set of longitudinal sociomatrices gathered by
Newcomb (1961), and obtained several qualitative patterns of the trajectories of
the vector fields in which members interact with each other. Here, the vector field
at each point in time is estimated from the data. In other words, a major concern
of this model is to obtain some dynamic structures of asymmetric relationships
among members. Thus, this model can be said to be a dynamical system scaling
and we call it DYNASCAL. Gregersen and Sailer (1990) examined a metamodel
of two-person social systems described by a set of real two-dimensional nonlinear
difference equations, and found curious chaotic behaviors. These equations include
Mandelbrot’s set. Tobler (1976/77) proposed a "wind" model for the interaction
between geographical areas. In his model, the ASM is, for example, the amount
of migration from place i to place j. The wind is interpreted as facilitating the
interaction between geographical areas in particular directions. Tobler estimates a
special vector filed on a map from the data, and then decomposes it into divergence-
and curl-free parts, and finally calculates the scalar and vector potentials. Yadohisa
and Niki (1999) proposed a vector field representation of asymmetric proximity data,
especially the scalar potential of the field.

Among these models, DYNASCAL has excellent features since it utilises qualita-
tive theories of dynamical system, such as those of singularities, structural stability,
and bifurcations of vector field. As a result, given the longitudinal AMSs between
members, it draws a two-dimensional vector field on the estimated configuration of
members at each time. Furthermore, it depicts singularities and several fundamental
solution curves peculiar to each of the vector fields. This enables interpretation of
global and local dynamical properties of the group structure at each time. However,
DYNASCAL has several disadvantages, too, of which we describe four of them.
Firstly, it presupposes asymmetric relationships between members but the estimated
relationships are symmetric. Secondly, it might not be fully justified mathematically
to administer the Procrustes rotations to the neighboring pairs of configurations. The
reason for this is that DYNASCAL assumes a deterministic, nonlinear solution curve
of each member in a state space as an underlying dynamics which cannot be some-
times congruent with the Procrustes rotations. Thirdly, DYNASCALwill not capture
the so-called chaotic behaviors since it is restricted to a two-dimensional differential
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system. Fourthly, it is not possible for DYNASCAL to examine the behaviors of
the system theoretically, since it merely estimates the solution curves using spline
functions (Chino, 2005).

In this paper, we shall discuss complex difference system models for asymmetric
interaction which were first proposed at The International Conference on Measure-
ment and Multivariate Analysis held on May 2000 in Banfff, Canada in order to
overcome those difficulties pointed out above and subsequently developed further by
the author (Chino, 2000, 2001, 2002, 2003, 2005, 2006, 2014, 2015a,b).

2 Earlier version of the complex difference system models

The complex difference system models we proposed elsewhere (Chino, op. cit.) have
several assumptions. Firstly, the state space in which we embed members (objects,
nodes) is assumed to be a finite-dimensional Hilbert space or an indefinite-metric
space. If we restrict our attention to a one-dimensional space, then an indefinite-
metric space may be identified with a Hilbert space. This assumption can be justified
by the Hermitian form model (abbreviated as HFM) which is underpinned by the
Chino-Shiraiwa theorem (1993). In fact, in HFM any ASM, say, S, is decomposed
into two parts as follows:

S =
1
2
(S + St ) +

1
2
(S − St ) = Ss + Ssk, (1)

where S is a square asymmetric matrix of order n which is the number of objects, and
Ss and Ssk are called the symmetric part and the asymmetric part (to be precise, the
skew-symmetric part), respectively. This decomposition has been used extensively
in the literature (e.g., Beh & Lonbardo, 2022; Bove, 1992; Constantine & Gower,
1978; Escoufier & Grorud, 1980; Gower, 1977; Greenacre, 2000).

HFM is deduced by reinterpreting the eigenvalue problem of the Hermitianmatrix
H , which is constructed uniquely from the observed real square asymmetric matrix
S, from the view point of asymmetric MDS, or, stated another way, from a geometric
view point. Here, the Hermitian matrix H is simply computed as follows:

H = Ss + i Ssk, (2)

where i is the imaginary number, that is, a square root of−1. Eq. (2) is nothing but the
definition of Hermitian matrix. For, if H is Hermitian, then the conjugate transpose
of H is H (e.g., Wilkinson, 1965). Here, it should be noticed that in general St

sk is
equal to −Ssk . H is thought of as a complexification of a real matrix S, and there is a
one-to-one correspondence between them. Escoufier and Grorud (1980) also utilize
this equation in their asymmetric MDS. However, they do not solve the eigenvalue
problem of H defined by this equation directly. Instead, they solve it by defining a
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real symmetric matrix of order 2n such that

H =

(
Ss −Ssk

Ssk Ss

)
.

Let us rewrite the eigenvalue problem of H , i.e., H u j = λj u j , as follows:

H = U1ΛpU
∗
1, (3)

Here the p×n matrixU∗1 is the conjugate transpose of the n×p matrixU1. Of course,
the p × p matrix Λp is a real diagonal matrix Λp = diag (λ1, · · · , λp) consisting
of the non-zero eigenvalues of H arranged in descending order. U1 is consisting of
p eigenvectors corresponding to these non-zero eigenvalues. If we define an n by n
matrix U which is composed of the eigenvectors associated with all the eigenvalues
including zeros of H as

U = {u1, · · · , up︸       ︷︷       ︸
p

, up+1, · · · , un︸          ︷︷          ︸
n − p

} = (U1, U2), (4)

then U1 is the first part of the unitary matrix U corresponding to the non-zero
eigenvalues.

Let us now rewrite (3) as

hjk = ϕ (τ j, τk) = τ j Λp τ
∗
k, (5)

then ϕ (τ j, τk) satisfies the properties ofHermitian form (Cristescu, 1977; Lancaster
& Tismenetsky, 1985), where τ j is a p-dimensional row vector corresponding to the
jth row of U1. Furthermore, (5) associates hjk with a Hermitian form.

Chino and Shiraiwa (1993) proved that n objects are embedded in a finite-
dimensional complex (f.d.c.) Hilbert space if H is positive semi-definite (p.s.d.)
(or negative semi-definite (n.s.d.)), whereas they are embedded in an indefinite met-
ric space if H is indefinite.

Another assumption is composed of the following basic principles of interpersonal
behaviors:

1. The asymmetric sentiment relationships among members make their affinities
change.

2. If a member has a positive sentiment toward another member, then he or she
approaches to the target member.

3. If a member has a negative sentiment toward another member, then he or she
departs from the target member.

There exist two minor principles in this family, as listed below:

1. The magnitude of change in coordinate of members is proportional to the sine of
the difference in angles (arguments) between two members in a complex plane.
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2. The magnitude of change in coordinate of members is proportional to the norm
of the coordinate in a complex plane.

The complex difference systemmodels were defined under the above assumptions
as follows:

z j,n+1 = z j,n +

q∑
m=1

N∑
k,j

D(m)
jk,n

f (m)(z j,n − zk,n) + z0, j = 1, 2, . . . , N, (6)

where

f (m)(z j,n − zk,n) =
(
(z(1)j,n − z(1)

k,n
)
m
, (z(2)j,n − z(2)

k,n
)
m
, . . . , (z(p)j,n − z(p)

k,n
)
m
) t
, (7)

and
D(m)

jk,n
= diag

(
w
(1,m)
jk,n

, w
(2,m)
jk,n

, . . . , w
(p,m)
jk,n

)
, (8)

w
(l,m)
jk,n
= a(l,m)n r (l,m)j,n r (l,m)

k,n
sin

(
θ
(l,m)
k,n
− θ
(l,m)
j,n

)
, l = 1, 2, . . . , p, m = 1, 2, . . . , q,

(9)

Here, z j,n denotes the coordinate vector of member j at time n in a p-dimensional
Hilbert space or a p-dimensional indefinite metric space. Moreover, m denotes the
degree of the vector function f (m)(zk,n − z j,n) in (7), which is assumed to have the
maximum value q. z0 is a complex constant. Furthermore, a(l,m)n is a real constant
coefficient of the term (z(l)j,n − z(l)

k,n
)
m
, r (l,m)j,n and θ(l,m)j,n are, respectively, the norm and

the argument of z j,n at time n on dimension l. Usually, both of r (l,m)j,n and θ(l,m)j,n are
independent of m.

At this point, we shall briefly explain how these results in (6) through (9) relate
to S, H , U (especially, U1), and τ’s introduced previously. The matrix S in (1)
consists of observed similarities, sjk , between objects, and thus it is a real matrix.
On the other hand, the matrix H in (2) consists of hypothetical similarities, hjk ,
between objects, and it is a complex matrix. It is apparent that there is a one-to-one
correspondence between S and H .

In HFM, we decompose H into Λp and U1 which are composed of the non-zero
eigenvalues and eigenvectors corresponding to these eigenvalues of H , as shown
in (3). According to the Chino-Shiraiwa theorem, objects are embedded in a p-
dimensional Hilbert space if H is p.s.d., and are embedded in an indefinite metric
space if H is indefinite which means that H has both positive and negative eigenval-
ues. In any case, τ j and τk in (5) are p-dimensional row vectors corresponding to the
jth row and kth row, respectively, of U1 in (3). Therefore, τ j and τk are coordinate
vectors of objects j and k, respectively in a p-dimensional Hilbert space ifH is p.s.d..
From (1) through (5), it is apparent that these coordinate vectors (eigenvectors) and
eigenvalues explain the hypothetical similarities, hjk , and corresponding observed
asymmetric similarities, sjk , between objects.
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Fig. 1 Changes in configurations of two members in a one-dimensional Hilbert space at iterations,
1, 20, 60, and 100 in a simulation study.

In our complex difference system models, we model the changes in observed
asymmetric similarities, sjk , over time. Since there is a one-to-one correspondence
between S and H , and since the eigenvalue problem of H gives us the complex
coordinate vectors of objects in a Hilbert space if H is p.s.d., we consider these
vectors as state vectors of objects which change over time. Here, we assume that hy-
pothetical asymmetric interactions between objects exist which cause the changes in
state vectors over time. The w(l,m)

jk,m
are parameters concerned with these hypothetical

asymmetric interactions. The z j,n in (6) is nothing but these state vectors at time
n in a p-dimensional Hilbert space. It should be noticed that the second right-hand
side of (6) is a vector function since D(m)

jk,n
defined in (8) is a p × p diagonal matrix

and f (m)(zk,n − z j,n) is a p-dimensional column vector defined in (7). As a result,
each element of the vector function represented by the second right-hand side of (6)
is a complex polynomial function of (zj,n − zk,n) whose degree is q. Finally, z0 is a
complex constant since the location of object j, z j,n, in (6), which is embedded in a
p-dimensional Hilbert space, is a complex vector.

Fig. 1 shows an example of simulations using a special case of the above difference
systems in which we show changes in configurations of two members in a one-
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dimensional Hilbert space. This special case is written as follows for n-iteration:
wjk,n = a(|zj,n | |zk,n |)a sin (θk,n − θ j,n),
zj,n+1 = zj,n + wjk,n(zj,n − zk,n)2,
zk,n+1 = zk,n + wjk,n(zj,n − zk,n)2,

where a is a scaling factor of the configuration which controls the domain (i.e., the
coordinate at time n) and range (i.e., the coordinate at time n+1) of the configuration,
and is a special case of a(l,m)n in (9). In this simulation it was set equal to 1/50.
Moreover, the degree of the polynominal of z j,n− zk,n in (6) was assumed to be 2, as
can be seen from the above equations. Furthermore, in this case the p-dimensional
vector z j,n in (6) becomes a scalar zj,n, because we assume here that p = 1. Finally,
we set the initial configuration (zj,1, zk,1) of the above difference systems equal to (1,
i/2). The reason for setting this configuration is that the skewness of the similarities
between two members j and k is theoretically the largest of all, if the angle between
two members in the complex space is π/2 (see, for example, Chino, 2020a). In
Fig.1 we denote z1,n and z2,n simply by A and B, respectively. Moreover, time is
identified with iteration. Thus, for example, A and B in Fig.1a indicate z1,1 and z2,1,
respectively, in the initial configuration of members. Since the angle between two
members at iteration 1 is π/2, this means that member B likes member A very much
but member A does not like member B at all at iteration 1. As for the interpretation
of the configuration of objects in HFM, see Chino (2020a). Finally, the complex
constant z0 in (6) was set equal to zero.

Fig. 2 shows the changes in self-similarities of two members and those in angles
over 200 iterations. In Fig. 2c one can see that the angle between two members
approaches π as the iterations increase. Fig. 3 illustrates changes in locations of
two members over 200 iterations in a one-dimensional Hilbert space. In this figure,
A1 and B1 indicate initial points of members j(= 1) and k(= 2), respectively. To
be precise, coordinates of A1 and B1 in this complex plane are (1, 0) and (0, i/2),
respectively.

Similarly, if we set a nonzero value to z0 in (6), we can obtain more curious
patterns of changes in locations of members over iteration than those in Fig. 3.
However, there is a serious drawback in the complex system described by (6), (7),
(8), and especially in (9). That is, the function w

(l,m)
jk,n

in (9) is not holomorphic
(Chino, 2014), since both r and θ are the functions of z and the conjugate of z,
i.e., z̄. Here, holomorphic means complex differentiable (e.g., Ebeling, 2007). The
complex differentiability of a complex-valued function is a natural extension of
the differentiability of a real-valued function in a real space to that of a complex-
valued function in a complex space. As a result, we cannot examine mathematical
properties of the above different system models using complex differential calculus.
The late K. Shiraiwa (personal communication, March 3, 2014), who had long been
one of my colleagues, pointed out this drawback. Therefore, we have discarded (9)
in our complex difference system models since then. The next section discusses a
revised version of the complex difference system models which are composed of
holomorphic functions.
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Fig. 2 Changes in self-similarities of two members as well as the angles between them in a
one-dimensional Hilbert space over 200 iterations in a simulation study.

3 Revised version of the complex difference system models

The revised version of the complex difference systemmodels which are composed of
holomorphic functions (Chino, 2016a,b, 2017) is nothing but a simplified version of
the earlier version without (9) in the previous section. As a result, all the w(l,m)

jk,n
in (8)

become complex constants, and the corresponding minor principles in the previous
section are no longer necessary. Thus, we have the following complex difference
system models in a strict sense:

z j,n+1 = z j,n +

q∑
m=1

N∑
k,j

D(m)
jk,n

f (m)(z j,n − zk,n) + z0, j = 1, 2, . . . , N . (10)

Here,

f (m)(z j,n − zk,n) =
(
(z(1)j,n − z(1)

k,n
)
m
, (z(2)j,n − z(2)

k,n
)
m
, . . . , (z(p)j,n − z(p)

k,n
)
m
) t
, (11)

and
D(m)

jk,n
= diag

(
w
(1,m)
jk,n

, w
(2,m)
jk,n

, . . . , w
(p,m)
jk,n

)
. (12)



Complex difference system models for asymmetric interaction 9

Fig. 3 Changes in locations of two members over iterations in a one-dimensional Hilbert space.

Equations (10) through (12) are the same as (6) through (8), but no constraints are
imposed on the elements of the diagonal matrix D(m)

jk,n
in (12). In other words, in the

revised version we have discarded the weight constraints (9) in the earlier version.
Therefore, w(1,m)

jk,n
, w
(2,m)
jk,n

, . . . , w
(p,m)
jk,n

are considered as free parameters in the revised
version. This means that we may assume any values in these parameters.

Chino (2017) added a control term g(u j,n) to the right-hand side of (10). In
general, a control term in a control theory (e.g., Elaydi, 1991) is a forcing term which
controls a (difference or differential) system from its outside. In (10), the control can
be applied to affect directly each of the state variables z1,n, z2,n, . . . , zN,n. In this
case, (10) is revised as follows:

z j,n+1 = z j,n+

q∑
m=1

N∑
k,j

D(m)
jk,n

f (m)(z j,n− zk,n)+g(u j,n)+ z0, j = 1, 2, . . . , N, (13)

where g(u j,n) is a control (e.g., Elaydi, 1999; Ott et al., 1990).
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Fig. 4 Changes in configurations of two members in a one-dimensional Hilbert space at iterations,
1, 20, 60, and 100, in another simulation study.

Moreover, we assume in the revised version that members obey only the three
basic principles of interpersonal behaviors discussed in Section 2. It should be noted
that we discarded the two minor principles discussed there. Fig. 4 shows another
example of simulations using a special case of the above difference systems, in which
we show changes in configurations of two members in a one-dimensional Hilbert
space (Chino, 2016a). This case is written as follows for n-iteration:

wjk,n = 0.01(1 + i), wk j,n = −0.02(1 + i),
zj,n+1 = zj,n + wjk,n(zj,n − zk,n),
zk,n+1 = zk,n + wk j,n(zk,n − zj,n),

The initial coordinates of two members, zj,1 and zk,1, were set equal to 1 and
i/2, which means that the initial configuration of members is the same as that in
the example shown in Section 2. However, in this example, the system is linear
in contrast with the system shown in Section 2. In general, a wide class of linear
difference equations can be solved explicitly and the qualitative behaviors of the
solution curves in these equations are simple. However, most nonlinear difference
equations cannot be solved explicitly (e.g., Cull et al., 2005; Elaydi, 1991).Moreover,
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Fig. 5 Changes in configurations of two members in a one-dimensional Hilbert space over 1000
iterations in another simulation study.

the elements of the diagonal matrix D(m)
jk,n

in (12) are assumed to be (complex)
constants in marked contrast to those of the diagonal matrix in the earlier version.
Note that in the earlier version the elements of the diagonal matrix vary with time
n according to (9). Finally, the reason why we consider here a linear system as an
example of the above revised version is that we can solve this kind of linear system
analytically. In fact, we can prove that, for example, the above system has a fixed
point using a familiar method called the Putzer algorithm in difference equations
(e.g., Cull et al., 2005; Elaydi, 1991). If we apply this algorithm to the above system,
we can compute its fixed point as 2− 0.5i, although we shall not show its proof here
because it is beyond the scope of this paper. In the following we shall check whether
the fixed point of the above system approaches to this value.

Fig. 5 shows the changes in self-similarities of two members as well as angles
over 1000 iterations. In Fig. 5c one can see that the angle between two members
approaches 0 as iteration proceeds. Fig. 6 illustrates changes in locations of two
members over 1000 iterations in a one-dimensional Hilbert space. In this figure, A1
and B1 indicate initial points of members j and k, respectively, as in Fig. 3 in the
previous section. As can be seen in this figure, the speed of convergence became
slower and slower as locations of two members approach the fixed point. Even after
500 iterations these locations did not reach the fixed point. However, after 1000
iterations, those of members A and B reached 2.0 − 0.5000i and 2.0 − 0.5001i,
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respectively. This means that two members become deeply in love with each other
as iteration proceeds.

Fig. 6 Changes in locations of twomembers in a one-dimensional Hilbert space over 1000 iterations
in the above difference system.

In this way, we can find various patterns of dynamics which are generated by
the asymmetric interactions among members. Such a job might be said to be a
classification of dynamics generated by the complex interactions among objects.
This type of classification of dynamics may be contrasted with a classification of
the static structures among members obtained by applying a traditional two-mode
three-way asymmetric MDS to a longitudinal set of asymmetric matrices.

4 Discussion

The complex difference system models for asymmetric interaction discussed in this
paper were first proposed by the author at The International Conference on Mea-
surement and Multivariate Analysis held on May, 2000, in Banff, Canada, and have
been revised since then, as introduced in Sections 2 and 3. In these sections we have
been mainly concerned with social interactions. However, asymmetric interaction
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can be observed ubiquitously not only in our daily lives but also in vivo, in vitro,
and studies in the field, in various disciplines of science. For example, pecking order
among hens and cocks is a special asymmetric interaction in ethology (e.g., Masure
& Allee, 1934). Biosynthetic pathway of proteins in mammals has one-sided paths
and cycles (e.g., Imai & Guarente, 2014), which can be considered as an asymmetric
interaction among proteins. Weight matrix among hidden layers in neural networks
represents asymmetric interactions in the brain (e.g., Goodfellow et al., 2016).

Considering these phenomena as well as the relation between weight matrix and
directed graph (abbreviated as digraph), we have recently renamed our complex
difference system models with holomorphic functions dynamic weighted digraph
(abbreviated as DWD) (Chino, 2018, 2019, 2020b, 2021). Here, if a number is
associated with an edge of a graph, these numbers are called weights, and a matrix
with these numbers is called a weight matrix. In a digraph, the weight matrix is
generally asymmetric. Therefore, in DWD asymmetric interactions are no longer
restricted to social interactions. As discussed in Chino (2018), the weighted digraph
in DWD is a digraph with weights specified at time n, which are attached to each
directed arc (or edge, link) between nodes (or vertices) as well as each loop of the
digraph. Moreover, our elementary theory of DWD assumes that the weight matrix
denotes the proximity strengths among nodes at any instance of time, and that it
varies as time proceeds. As a result, we obtain a set of longitudinal ASM introduced
in the introductory section.

As in the complex difference system models with holomorphic functions, the
state space in which we embed members (objects, nodes) is assumed to be a finite-
dimensional Hilbert space or an indefinite-metric space. It should be noted here that
the state space is a hypothetical or latent space and cannot be observed directly.
Furthermore, we assume that the configuration of nodes varies according to the
mutual interactions among nodes as time proceeds. Parameters related to these
mutual interactions are specified a priori as certain functions of α(1,m)

jk
, α(2,m)

jk
, . . .,

α
(p,m)
jk

, described by (12) in which w(p,m)
jk

are replaced by α(p,m)
jk

.
As also pointed out in Chino (2018), the purpose of DWD is two-fold. One is

theoretical, and the other practical. For the theoretical purpose, we compute the
trajectories of nodes using (10), by setting an arbitrary initial configuration of nodes.
Then, we recover the longitudinal digraphs associated with these similarity matrices.
We can classify the patterns of changes in digraphs over time (or iteration) according
to the patterns of trajectories of nodes over time (or iteration). For practical purposes,
it will be possible to demonstrate the ideas above using empirical examples. For
example, if we apply HFM to an observed asymmetric similarity matrix at a point in
time, we can compute a p-dimensional configuration of members (objects, nodes). If
the Hermitian matrix H computed from the observed similarity matrix is p.s.d., we
can embed a p-dimensional configuration of members in a Hilbert space. Then, we
can use the configuration thus obtained as initial values of DWD, if we assume the
hypothetical complex weights in (12). Finally, if we apply (10) to the configuration of
members with initial values and these hypothetical weights, we can examine various
scenarios of solution curves like those in Fig. 6. These tasks remain to be done for
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future works. We shall go further with details of DWD in a book to be published in
the near future.
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